基本信息
姓名:杨大杰
院系:数理学院
研究方向:微纳光学、凝聚态物理
联系电话:010-61772246
电子邮箱:djyang@ncepu.edu.cn
办公地址:主C1025
科研经历
1. 2024-今 华北电力大学 数理学院 副教授、硕导 光学、凝聚态
2. 2020-2023 华北电力大学 数理学院 讲师 光学、凝聚态
3. 2018-2020 北京计算科学研究中心 材料能源部 博士后 光学、凝聚态
4. 2015-2018 武汉大学 高等研究院 博士 光学
5. 2013-2015 武汉大学 物理科学与技术学院 硕士 光学
主要研究方向为微纳光学,包括表面等离激元学、涡旋光学、超表面电磁学、光子晶体学、纳米天线和纳米波导、非线性光子学等,相关研究还涉及量子、光电、光热、光力等效应。主要学术成果为2018年提出并解析SPP驻波模式、2022年提出并利用涡旋光束实现相控阵等离激元纳米天线。已发表SCI论文45篇,包括Phy. Rev. Lett., Nano Lett., ACS Nano, Photonics Res., Adv. Funct. Mater., Nano Res., Nanoscale, Adv. Opt. Mater., ACS Appl Mater. Interfaces.等著名国际期刊。论文他引1060次(谷歌学术,截止2024年2月),H因子为18。
科研项目
1. 国家自然科学基金委员会, 青年项目, 12204169, 轨道角动量光束的表面等离激元相控阵纳米天线,30万元, 在研, 主持
2. 国家自然科学基金委员会, 重点项目, 11934003, 表面激发态和非绝热动力学方法及应用, 330万元, 在研, 参与
3. 国家自然科学基金委员会, 国际(地区)合作与交流项目, 21961132023, 分子纳米复合体系中的多激子动力学, 246万元, 结题, 参与
4. 国家自然科学基金委员会, 面上项目, 11874293, 等离激元非辐射弛豫增强低维异质结构界面的能量和电荷转移及其光催化应用, 64万元, 结题, 参与
5. 国家自然科学基金委员会, 重大研究计划, 91750113, 表面等离激元局域光场调控低维结构中的激子耦合与能量转移, 80万元, 结题, 参与
6. 国家自然科学基金委员会, 面上项目, 11674254, 金属纳米结构量子等离激元二阶激发与二次谐波增强, 73万元, 结题, 参与。
学生培养与学生荣誉
黄海文,北京市普通高校优秀本科毕业设计(论文), 省部级, 2023年
柴运泽、彭浩、王新茸、施越, 全国大学生物理实验竞赛(创新)一等奖, 国家级, 2023年
代表性论文
1. Yang D. J., Im S. J., Huang H. W., Ri C. S., Kim K. D., Song K. S., Liu J. C., Wang Q. Q. Anomalous plasmon coupling and Fano resonance under structured light. Photonics Res. 2023, 11(8): 1423-1430.
2. Yang D. J., Liu J. C. Selective high-order resonance in asymmetric plasmonic nanostructures stimulated by vortex beams. Nanoscale 2023, 15(28): 11860-11866.
3. Yang D. J., Im S. J., Li Y., Ri C. S., Ho K. S., Pae J. S., Wang Q. Q. Interactions between Plasmonic Nanoantennas and Vortex Beams. Nano Lett. 2022, 22(12): 5015-5021.
4. Yang D. J., Ding S. J., Ma L., Mu Q. X., Wang Q. Q. SPP standing waves within plasmonic nanocavities. Opt. Express 2022, 30(24): 44055-44070.
5. Yang D. J. Direct Detection of Ultraweak CO Signal with Cavity Plasmon by Resonant Vibration–Plasmon Coupling. Adv. Theor. Simul. 2020, 3(10): 2000146.
6. Yang D. J., Zhang S., Im S. J., Wang Q. Q., Xu H., Gao S. Analytical analysis of spectral sensitivity of plasmon resonances in a nanocavity. Nanoscale 2019, 11(22): 10977-10983.
7. Yang D. J., Pan G. M., Ding S. J., Hao Z. H., Zhou L., Wang Q. Q. Gain-modulated plasmonic Rabi oscillations of coupled nanocomplex. Opt. Mater. 2017, 73: 358-363.
8. Yang D. J., Im S. J., Pan G. M., Ding S. J., Yang Z. J., Hao Z. H., Zhou L., Wang Q. Q. Magnetic Fano resonance-induced second-harmonic generation enhancement in plasmonic metamolecule rings. Nanoscale 2017, 9(18): 6068-6075.
9. Yang D.-J., Yang Z.-J., Li Y.-Y., Zhou L., Hao Z.-H., Wang Q.-Q. Tunable Fano Resonance in Rod-Ring Plasmonic Nanocavities. Plasmonics 2014, 10(2): 263-269.
10. Ri C.-S., Choe S., Im S.-J., Kim K.-D., Song K.-S., Pae J.-S., Ho K.-S., Yang D.-J. Acoustically-switchable nonlinear frequency conversion in gas-filled hollow-core photonic crystal fibers. Optik 2023, 293: 171414.
11. Kang H. S., Zhao W. Q., Zhou T., Ma L., Yang D. J., Chen X. B., Ding S. J., Wang Q. Q. Toroidal dipole-modulated dipole-dipole double-resonance in colloidal gold rod-cup nanocrystals for improved SERS and second-harmonic generation. Nano Res 2022, 15(10): 9461-9469.
12. Ding S. J., Ma L., Feng J. R., Chen Y. L., Yang D. J., Wang Q. Q. Surface-roughness-adjustable Au nanorods with strong plasmon absorption and abundant hotspots for improved SERS and photothermal performances. Nano Res. 2022, 15(3): 2715-2721.
13. Ma S., Yang D. J., Ding S. J., Liu J., Wang W., Wu Z. Y., Liu X. D., Zhou L., Wang Q. Q. Tunable Size Dependence of Quantum Plasmon of Charged Gold Nanoparticles. Phys. Rev. Lett. 2021, 126(17): 173902.
14. Li N., Yang D. J., Shao Y., Liu Y., Tang J., Yang L., Sun T., Zhou W., Liu H., Xue G. Nanostructured Black Aluminum Prepared by Laser Direct Writing as a High-Performance Plasmonic Absorber for Photothermal/Electric Conversion. ACS Appl. Mater. Interfaces 2021, 13(3): 4305-4315.
15. Ding S. J., Ma L., Zhou T., Yang D. J., Nan F., Zhou L., Wang Q. Q. Highly efficient one-photon upconversion with cooperative enhancements of photon and phonon absorption in chlorophyll plexciton hybrids. Appl. Phys. Lett. 2021, 118(22): 221104.
16. Zhou T., Ding S. J., Wu Z. Y., Yang D. J., Zhou L. N., Zhao Z. R., Ma L., Wang W., Ma S., Wang S. M., Zou J. N., Zhou L., Wang Q. Q. Synthesis of AuAg/Ag/Au open nanoshells with optimized magnetic plasmon resonance and broken symmetry for enhancing second-harmonic generation. Nanoscale 2021, 13(46): 19527-19536.
17. Ma L., Chen Y. L., Yang D. J., Li H. X., Ding S. J., Xiong L., Qin P. L., Chen X. B. Multi-interfacial plasmon coupling in multigap (Au/AgAu)@CdS core-shell hybrids for efficient photocatalytic hydrogen generation. Nanoscale 2020, 12(7): 4383-4392.
18. Ma L., Chen Y. L., Yang D. J., Ding S. J., Xiong L., Qin P. L., Chen X. B. Gap-Dependent Plasmon Coupling in Au/AgAu Hybrids for Improved SERS Performance. J. Phys. Chem. C 2020, 124(46): 25473-25479.
19. Qiu Y. H., Ding S. J., Lin Y. J., Chen K., Yang D. J., Ma S., Li X., Lin H. Q., Wang J., Wang Q. Q. Growth of Au Hollow Stars and Harmonic Excitation Energy Transfer. ACS Nano 2020, 14(1): 736-745.
20. Ma L., Chen Y. L., Song X. P., Yang D. J., Li H. X., Ding S. J., Xiong L., Qin P. L., Chen X. B. Structure-Adjustable Gold Nanoingots with Strong Plasmon Coupling and Magnetic Resonance for Improved Photocatalytic Activity and SERS. ACS Appl. Mater. Interfaces 2020, 12(34): 38554-38562.
21. Ma L., Yang D.-J., Song X.-P., Li H.-X., Ding S.-J., Xiong L., Qin P.-L., Chen X.-B. Pt Decorated (Au Nanosphere)/(CuSe Ultrathin Nanoplate) Tangential Hybrids for Efficient Photocatalytic Hydrogen Generation via Dual‐Plasmon‐Induced Strong VIS–NIR Light Absorption and Interfacial Electric Field Coupling. Solar RRL 2019, 4(1): 1900376.
22. Lin Y. J., Ding S. J., Chen K., Yang D. J., Xie Y., Hao Z. H., Zhou L., Wang Q. Q. Plasmon-enhanced photocatalytic activity of Pt@Au and Pt@Cu nanoparticles in quantum size regime. J. Nanopart. Res. 2019, 21(7): 137.
23. Ding S. J., Zhang H., Yang D. J., Qiu Y. H., Nan F., Yang Z. J., Wang J., Wang Q. Q., Lin H. Q. Magnetic Plasmon-Enhanced Second-Harmonic Generation on Colloidal Gold Nanocups. Nano Lett. 2019, 19(3): 2005-2011.
24. Cheng Z. Q., Qiu Y. H., Li Z. L., Yang D. J., Ding S. J., Cheng G. L., Hao Z. H., Wang Q. Q. Fabrication of silver dendrite fractal structures for enhanced second harmonic generation and surface-enhanced Raman scattering. Opt. Mater. Express 2019, 9(2): 860-869.
25. Chen K., Gong L.-L., Ding S.-J., Liu J., Ma S., Wang J.-H., Yang D.-J., Pan G.-M., Hao Z.-H., Zhou L., Wang Q.-Q. Tunable Charge Transfer and Dual Plasmon Resonances of Au@WO3−x Hybrids and Applications in Photocatalytic Hydrogen Generation. Plasmonics 2019, 15(1): 21-29.
26. Liu X. L., Nan F., Qiu Y. H., Yang D. J., Ding S. J., Wang Q. Q. Large Third-Order Optical Susceptibility with Good Nonlinear Figures of Merit Induced by Octupole Plasmon Resonance of Asymmetric Au-Ag Core-Shell Nanorods. J. Phys. Chem. C 2018, 122(7): 3958-3964.
27. Pan G. M., Yang D. J., Zhou L., Hao Z. H. Low-loss resonance modes in a gain-assisted plasmonic multimer. J. Phys. D Appl. Phys. 2018, 51(11): 115104.
28. Ma L., Ding S. J., Yang D. J. Preparation of bimetallic Au/Pt nanotriangles with tunable plasmonic properties and improved photocatalytic activity. Dalton Trans. 2018, 47(47): 16969-16976.
29. Xie Y., Ma L., Cheng Z. Q., Yang D. J., Zhou L., Hao Z. H., Wang Q. Q. Plasmon-assisted site-selective growth of Ag nanotriangles and Ag-Cu(2)O hybrids. Sci. Rep. 2017, 7(1): 44806.
30. Ding S. J., Yang D. J., Li J. L., Pan G. M., Ma L., Lin Y. J., Wang J. H., Zhou L., Feng M., Xu H., Gao S., Wang Q. Q. The nonmonotonous shift of quantum plasmon resonance and plasmon-enhanced photocatalytic activity of gold nanoparticles. Nanoscale 2017, 9(9): 3188-3195.
31. Chen K., Ma L., Wang J.-H., Cheng Z.-Q., Yang D.-J., Li Y.-Y., Ding S.-J., Zhou L., Wang Q.-Q. Integrating metallic nanoparticles of Au and Pt with MoS2-CdS hybrids for high-efficient photocatalytic hydrogen generation: Via plasmon-induced electron and energy transfer (Open Access). RSC Adv. 2017, 7(42): 26097-26103.
32. Pan G. M., Yang D. J., Zhou L., Hao Z. H., Wang Q. Q. Enhanced Second Harmonic Generation by Mode Matching in Gain-assisted Double-plasmonic Resonance Nanostructure. Sci. Rep. 2017, 7(1): 9776.
33. Ding S., Yang D., Liu X., Nan F., Cheng Z., Im S.-J., Zhou L., Wang J., Wang Q. Asymmetric growth of Au-core/Ag-shell nanorods with a strong octupolar plasmon resonance and an efficient second-harmonic generation. Nano Res. 2017, 11(2): 686-695.
34. Ma L., Chen K., Nan F., Wang J. H., Yang D. J., Zhou L., Wang Q. Q. Improved Hydrogen Production of Au–Pt–CdS Hetero‐Nanostructures by Efficient Plasmon‐Induced Multipathway Electron Transfer. Adv. Funct. Mater. 2016, 26(33): 6076-6083.
35. Nan F., Xie F. M., Liang S., Ma L., Yang D. J., Liu X. L., Wang J. H., Cheng Z. Q., Yu X. F., Zhou L., Wang Q. Q., Zeng J. Growth of metal-semiconductor core-multishell nanorods with optimized field confinement and nonlinear enhancement. Nanoscale 2016, 8(23): 11969-11975.
36. Ma L., Yang D.-J., Luo Z.-J., Chen K., Xie Y., Zhou L., Wang Q.-Q. Controlled Growth of Sulfide on Gold Nanotriangles with Tunable Local Field Distribution and Enhanced Photocatalytic Activity. J.Phys. Chem. C 2016, 120(47): 26996-27002.
37. Im S. J., Ho G. S., Yang D. J., Hao Z. H., Zhou L., Kim N. C., Kim I. G., Wang Q. Q. Plasmonic phase modulator based on novel loss-overcompensated coupling between nanoresonator and waveguide. Sci. Rep. 2016, 6(1): 18660.
38. Ding S. J., Nan F., Yang D. J., Zhong Y. T., Hao Z. H., Wang Q. Q. Tunable plasmon resonance and enhanced second harmonic generation and upconverted fluorescence of hemispheric-like silver core/shell islands. Nanoscale 2015, 7(38): 15798-15805.
39. Ma L., Liang S., Liu X. L., Yang D. J., Zhou L., Wang Q. Q. Synthesis of Dumbbell-Like Gold-Metal Sulfide Core-Shell Nanorods with Largely Enhanced Transverse Plasmon Resonance in Visible Region and Efficiently Improved Photocatalytic Activity. Adv. Funct. Mater. 2015, 25(6): 898-904.
40. Cheng Z. Q., Nan F., Yang D. J., Zhong Y. T., Ma L., Hao Z. H., Zhou L., Wang Q. Q. Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement. Nanoscale 2015, 7(4): 1463-1470.
41. Zhang Y. F., Yang D. J., Wang J. H., Wang Y. L., Ding S. J., Zhou L., Hao Z. H., Wang Q. Q. Multiple hybridized resonances of IR-806 chromonic molecules strongly coupled to Au nanorods. Nanoscale 2015, 7(18): 8503-8509.
42. Ding S. J., Nan F., Yang D. J., Liu X. L., Wang Y. L., Zhou L., Hao Z. H., Wang Q. Q. Largely enhanced saturable absorption of a complex of plasmonic and molecular-like au nanocrystals. Sci. Rep. 2015, 5: 9735.
43. Li Y.-Y., Liu X.-L., Yang D.-J., Hao Z.-H., Wang Q.-Q. Synthesis and Optical Responses of Ag@Au/Ag@Au Double Shells. Chinese Phys. Lett. 2015, 32(2): 024205.
44. Liu X. L., Wang J. H., Liang S., Yang D. J., Nan F., Ding S. J., Zhou L., Hao Z. H., Wang Q. Q. Tuning Plasmon Resonance of Gold Nanostars for Enhancements of Nonlinear Optical Response and Raman Scattering. J. Phys. Chem. C 2014, 118(18): 9659-9664.
45. Nan F., Liang S., Wang J. H., Liu X. L., Yang D. J., Yu X. F., Zhou L., Hao Z. H., Wang Q. Q. Tunable Plasmon Enhancement of Gold/Semiconductor Core/Shell Hetero‐Nanorods with Site‐Selectively Grown Shell. Adv. Opt. Mater. 2014, 2(7): 679-686.