姓名: 王爱平
职称:教授
所在院系:数理学院
研究方向:Focus Area):
常微分算子理论(the theory of ordinary differential operators)
常微分方程与动力系统(ordinary differential equations and dynamical systems)
联系方式:
办公地址:主楼C517
电子邮箱:aiping@ncepu.edu.cn
个人简介及主要荣誉称号:
王爱平,1977年生。2006年7月毕业于内蒙古大学数学系应用数学专业,获理学博士学位。
2006.07-2012.06,天津科技大学数学系,副教授;2012.06–2013.06,加拿大University of Alberta数学与统计科学系,博士后;2013 年6 月,入选哈尔滨工业大学“百人计划”第四层次引进人才;2013.06-2018.11,哈尔滨工业大学数学系,副教授,硕士生导师;2018.11至今华北电力大学数理学院,2019年10月聘为教授。2007.06–2007.08美国Northern Illinois University数学系,访问学者;2011.02–2012.06加拿大University of Alberta数学与统计科学系,访问学者;2016.02–2017.01,加拿大University of Victoria 机械工程系,访问学者。
教学情况:
主讲课程: 数学分析,高等数学,高等代数,线性代数
代表性论著
[1] A. Wang and Anton Zettl, Ordinary Differential Operators,American Mathematical Society (AMS),
2019.(专著)
[2] A. Wang, B. Mu, Y. Shi, Event-triggered consensus control for multi-agent systems with time-varying communication and event-detecting delays, IEEE Transactions on Control Systems Technology , 27(2019), 507-515. (SCI)
[3] A. Wang and A. Zettl, A symmetric GKN-type theorem and symmetric differential operators,Journal of Differential Equations,265(2018), 5156-5176.(SCI)
[4] A.Wang and A. Zettl. Proof of the deciency index conjecture, Journal of Mathematical Analysis and Applications, 468 (2018),695–703. (SCI)
[5] A. Wang and A. Zettl,A GKN theorem for symmetric operators, Journal of Mathematical Analysis and Applications, 452(2017), 780-791. (SCI)
[6] A. Wang, B. Mu, Y. Shi, Consensus control for a multi-agent system with integral-type event-triggering condition and asynchronous periodic detection, IEEE Transactions on Industrial Electronics,64 (2017), 5629-5639. (SCI)
[7] A. Wang, J. Ridenhour and A. Zettl, Construction of regular and singular Green’s functions, Proceedings of the Royal Society of Edinburgh Section A-Mathematics, 142A (2012), 71-198. (SCI)
[8] A. Wang, J. Sun and A. Zettl, The classification of self-adjoint boundary conditions of differential operators with two singular endpoints, Journal of Mathematical Analysis and Applications,378 (2011), 493-506. (SCI)
[9] A. Wang, J. Sun and A. Zettl, Characterization of domains ofself-adjoint ordinary differentialoperators,Journal of Differential Equations, 246 (2009), 1600-1622. (SCI)
[10] A. Wang, J. Sun and A. Zettl, The classification of self-adjointboundary conditions: separated, coupled, and mixed, Journal of Functional Analysis,255 (2008), 1554-1573. (SCI)
[11] J. Sun, A. Wang and A. Zettl, Continuous spectrum and square-integrable solutions of differential operators with intermediate deficiency index, Journal of Functional Analysis, 255(2008), 3229-3248. (SCI)
[12] A.Wang, J. Sun and A.Zettl, Two-interval Sturm-Liouville operators in modified Hilbert spaces, Journal of Mathematical Analysis and Applications, 328 (2007), 390-399. (SCI)