姓名:李敏
职称职务:副教授,硕士生导师
学科专业及研究方向:
(1) 非线性动力系统(学硕):基于非线性偏微分方程研究光纤通信、流体力学、等离子体物理等领域中的非线波的动力学机制。
(2) 应用统计(专硕):基于机器学习方法研究大数据中的图片识别、数据分类以及非线性方程的数值求解。
联系方式:ml85@ncepu.edu.cn
教育及科研工作经历: 山东大学(威海)获学士学位,北京邮电大学获博士学位,英国谢菲尔德大学访问学者,2021年入选华北电力大学“创新人才支持与培育计划”。
科研情况: 以第一作者或通讯作者在Phys. Rev. E, Physica D, Phys. Lett. A, Proc. R. Soc. A等重要SCI期刊上发表27篇,累计SCI他引800余次(Web of Science),单篇最高他引次数达到170次,主持国家自然科学基金项目2项(青年科学基金和数学天元基金各1项)、中央高校基本科研业务费青年项目1项;参与北京市自然科学基金面上项目1项,参与中央高校基本科研业务费2项(重点项目和重大项目各1项)。
教学教研情况:
(1) 主讲课程:《数值分析》(纯英文讲授硕士研究生留学生课程);《复变函数与积分变换》和《线性代数》(本科生公共基础课程)。
(2) 教改项目: 主持2021年度研究生留学生课程《数值分析》的校级教改项目1项;参与2021年北京高等教育“本科教学改革创新项目”1项;参与校级思政示范课程项目1项。
(3) 竞赛指导:指导学生参加全国大学生数学建模竞赛获国家二等奖及北京市一等奖若干,获美国大学生数学建模竞赛获国际特等奖1项,国际一等奖和二等奖若干。
代表性科研论文列表:
1. Shan-Shan Zhang, Tao Xu, Min Li*, Xue-Feng Zhang, Higher-order algebraic soliton solutions of the Gerdjikov-Ivanov equation: Asymptotic analysis and emergence of rogue waves, Physica D 432:133128 (2022)
2. Min Li*, Bo-ting Wang, Tao Xu, Lei Wang, Quantitative analysis on the bifurcations and exact travelling wave solutions of a generalized fourth-order dispersive nonlinear Schrodinger equation in Heisenberg spin chain, Chaos, Solitons, Frac. 145:110767 (2021)
3. Min Li*,Xiao-lu Yue, Tao Xu, Asymptotic behaviors of mixed-type vector double-pole solutions for the discrete coupled nonlinear Schrödinger system, Eur. Phys. J. Plus 136:62 (2021)
4. Min Li*,Xiao-lu Yue, Tao Xu, Multi-pole solutions and their asymptotic analysis of the focusing Ablowitz-Ladik equation. Phys. Scr. 95, 055222 (2020)
5. Min Li*, Xue-feng Zhang, Tao Xu, and Ling-ling Li, Asymptotic Analysis and Soliton Interactions of the Multi-Pole Solutions in the Hirota Equation, J. Phys. Soc. Jpn. 89(5), 054004 (2020)
6. 李敏*, 王博婷, 许韬, 水涓涓, 四阶色散非线性薛定谔方程的明暗孤立波和怪波的形成机制,物理学报,69, 010502 (2020)
7. Min Li*, Juan-Juan Shui, Ye-Hui Huang, Lei Wang and Heng-Ji Li. Localized-wave interactions for the discrete nonlinear Schrödinger equation under the nonvanishing background. Phys. Scr. 93, 115203 (2018)
8. Min Li, Tao Xu and Dexin Meng. Rational solitons in the Parity-Time-Symmetric nonlocal nonlinear Schrödinger model. J. Phys. Soc. Jpn. 85,124001 (2016)
9. Min Li*, Lei Wang and Feng-Hua Qi. Nonlinear dynamics of a generalized higher-order nonlinear Schrodinger equation with a periodic external perturbation. Nonlinear Dyn. 86,535-541 (2016)
10. Min Li*, Huan Liang, Tao Xu and Chang-jing Liu. Vector rogue waves in the mixed coupled nonlinear Schrodinger equations. Eur. Phys. J. Plus 131,100 (2016)
11. Min Li* and Tao Xu. Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential. Phys. Rev. E 91,033202 (2015)
12. Min Li, Jing-Hua Xiao, Wen-Jun Liu, Pan Wang, Bo Qin and Bo Tian. Mixed-type vector solitons of the N-coupled mixed derivative nonlinear Schrödinger equations from optical fibers. Phys. Rev. E 87,032914 (2013)
13. Min Li, Jing-Hua Xiao, Tian-Zhong Yan and Bo Tian. Integrability and soliton interactions of a resonant nonlinear Schrödinger equation via binary Bell polynomials. Nonlinear Anal.: Real 14,1669-1679 (2013)
14. Min Li, Jing-Hua Xiao, Yan Jiang, Ming Wang, Bo Tian. Bound-state dark/antidark solitons for the coupled mixed derivative nonlinear Schrödinger equations in optical fibers. Eur. Phys. J. D 66,297 (2012)
15. Min Li, Jing-Hua Xiao, Wen-Jun Liu, Yan Jiang, Kun Sun, Bo Tian. Breather and double-pole solutions of the derivative nonlinear Schrödinger equation from optical fibers. Phys. Lett. A 375, 549-557 (2011)
16. Min Li, Bo Tian, Wen-Jun Liu, Hai-Qiang Zhang and Pan Wang. Dark and antidark solitons in the modified nonlinear Schrödinger equation accounting for the self-steepening effect. Phys. Rev. E 81, 046606: 1-8 (2010)