您目前的位置: 首页» 师资队伍» 导师介绍» 博士生导师

郭宝珠

                                                     image.png

姓名: 郭宝珠

职称: 教授

所在院系: 数理学院数学系

研究方向:Focus Area

分布参数系统控制 (Distributed Parameter Systems Control

控制理论 (Control Theory)

联系方式:

办公地址: 主楼 C1135

电子邮箱:bzguo@ncepu.edu.cn

办公电话:10-61772378

个人简介及主要荣誉称号:

郭宝珠,男, 19622月生。 1982年本科毕业于山西大学数学系,1984年硕士毕业于中国科学院系统科学研究所,1991年获香港中文大学应用数学博士学位。1999年中国科学院“百人计划”入选者;2009年山西省首届“百人计划”专家。1998年任北京理工大学应用数学系教授,2000为中国科学院数学与系统科学研究院研究员,2004-2019年任南非金山大学(University of the Witwatersrand)计算机与应用数学讲座教授,2019年加入华北电力大学数理学院。主要从事从事无穷维系统的建模,控制,数值计算,偏微分方程解的研究。在人口分布参数控制, 无穷维系统的镇定问题,振动系统分析的Riesz基理论,偏微分控制系统的适定性与正则性,最优控制的数值解,输出含有时间延迟的分布参数系统控制,自抗扰控制等几个研究方面有重要的贡献。除去**外, 七次主持国家基金项目包括重点基金,数次主持南非科学基金会项目。出版包括科学出版社在内的中文专著三本,国际著名出版社英文专著三本 (Springer 1999, 2019; Wiley 2016)。 数篇文章被国际同行公开评价为“重要的文章”; “非常重要的文章”。关于柔性机器臂剪力反馈控制文章被国际同行公开评价为“卓越的文章,用熟练非凡的数学证明了对机器人学实践显然重要的结果”。其关于Riesz 基的方法被国际文献称为”郭氏型Bari 定理”。关于自抗扰控制的三个主要环节,跟踪微分器,扩张状态观测器,以及反馈的工作奠定了这一控制技术的理论基础, 被国际同行评论为``对自控扰控制理论做出了重要的贡献”。

教学与人才培养情况:

1.教学课程:

曾经在南非教过的本科生课程: 线性系统控制;最优控制

2.学生培养

出站博士后:马玉兰(2004-2006),张琼(2004-2006), 王军民(2004-2006), 孙兵(2005-2006),郭伟(2007-2008), 邵志超(2006-2008),张志雄(2007-2008), 柴树根(2007-2008), 丁俊堂(2008-2009), 常晋德(2009-2010), 吴涛涛(2009-2010),蔡礼明(2009-2011),杨东辉(2010-2011), 金凤飞(2011-2012), 张亮(2012-2013),赵志良(2012-2013), 于怀强(2014-2015), 金凤飞(2013-2015),刘玉香(2014-2015)

毕业博士:谢宇(2003), 郭伟(2004), 孙兵(2005),邵志超(2006), 常晋德(2007), 张志雄(2007), 周翠莲(2007),吴涛涛(2009), 杨坤一(2009), 金凤飞(2011), 张国栋(2011),赵志良(2012), 赵志学(2012) Pene M Kamga (2013),康文(2014), 周华成(2015), 刘军军(2015),吴泽浩(2017, 任寒景(2019),孟亭亭(2020)。

主要科研项目情况

[1] 博士后基金(主持): 1991.9--1993.9, 国家教委 : 0.5;

[2] 生灭过程、弹性系统、烧蚀过程及其分布参数控制(主持), 1995.1--1997.12, 国家基金委(69404002): 8.3;

[3] 振动系统控制(主持), 1995.6--1998.6, 国家留学回国人员基金:3;

[4] 水资源中的应用数学-中法先进计划(主持), 1998.1--1999.12,国家科技部: 5;

[5] 复杂系统控制的基础理论研究(参加), 1997.1-2000.12, 国家科技部: 500(本人:14);

[6] Hilbert空间Riesz基方法与振动系统的边界控制(主持), 1999.1--2001.12, 国家基金委(69874003): 10;

[7] 中科院百人计划(主持), 2000.6-2003.6, 中国科学院: 200;

[8] 柔性结构振动控制的分布参数理论研究(参加), 2002.1-2004.12, 国家基金委(60174008): 18(本人:8);

[9]偏微分方程系统的适定性与正则性的研究(主持), 2004.1--2006.12,国家基金委(60374019): 15;

[10]分布参数系统理论(国家**}(主持), 2004.1-2007.12,国家基金委(60325309): 120;

[11] 数值求解最优控制: 动态规划方法(主持), 2010.1--2012.12,国家基金委(60974032): 31;

[12] 山西省“百人计划“, 2010-2012 100;

[13]973 项目, 国家科技部 (2011CB808002)(参加), 2011.1-2015.12,(本人:50万);

[14] 带有不确定干扰的无穷维系统的镇定(主持), 2013.1--2016.12,国家基金委(61273129): 80;

[15]不确定偏微分控制系统的输出反馈与性能跟踪(主持), 2019.1--2022.12,国家基金委(61873260): 65.

[16] 不确定偏微分系统的抗扰输出调节理论(主持), 2022-1--2025.12,国家基金委重点基金( 12131008)250万。

主要获奖

[1]2014年北京市自然科学二等奖 (获奖人: 郭宝珠,王军民)

[2]2019年 教育部自然科学二等奖 (获奖人: 王军民, 郭宝珠)

代表性论著

专著:

[1]. 于景元、 郭宝珠、 朱广田, 人口分布参数控制理论,华中理工大学出版社, 1999年,360.

[2]. 郭宝珠、柴树根,无穷维线性系统控制理论,科学出版社, 北京, 2012年, 406页; 第二版(现代数学基础丛书,2020),458页。

[3].  Z.H.Luo, B.Z.Guo and O.Morgul,  Stability and Stabilization of Infinite Dimensional Systems with Applications , 403 pages, Springer-Verlag, London, 1999.

[4]. B.Z.Guo and Z.L.Zhao,  Active Disturbance Rejection Control for Nonlinear Systems: An Introduction , 368 pages, Wiley & Sons, New York,2016.

[5].  B.Z.Guo and J.M.Wang, Control of Wave and Beam PDEs: The Riesz Basis Approach , 596 pages, Springer-Verlag, Cham, 2019.

代表性论文:

[1]. B.Z.Guo and T.Meng, Robust output feedback control for output regulation of Euler-Bernoulli beam equations, Mathematics of Control, Signals, and Systems, in press.

[2.] J.J.Liu and B.Z.Guo, Robust tracking error feedback control for a one-dimensional Schrodinger equation, IEEE Transactions on Automatic Control, in press.

[3]. Z.X.Zhao,B.Z.Guo, and Z.Han, Boundary control and observation to inverse coefficient problem for heat equation with unknown source and initial value, IEEE Transactions on Automatic Control, in press.

[4]. J.Liu and B.Z.Guo, Uniformly semidiscretized approximation for exact observability and controllability of one-dimensional Euler-Bernoulli beam, Systems & Control Letters, 156 (2021) , 105013, 8pp.

[5]. M.Ghattassi and B.Z.Guo, Output tracking for a radiative density optical communication system with unknown disturbance, IFAC Journal of Systems and Control, 17(2021), 100164, 12pp.

[6]. B.Z.Guo and S.A. Ivanov, Finite dimensional control of multichannel systems, Journal of Differential Equations, 296(2021), 213-241.

[7].  Y. Cheng, Y. Wu, and B.Z.Guo, Absolute boundary stabilization for an axially moving Kirchhoff beam, Automatica, 129(2021) , 109667,12p.  

[8]. B.Z.Guo and T.Meng, Robust output regulation of 1-d wave equation, IFAC Journal of Systems and Control, 16(2021), 100140, 10pp.

[9]. B.Z.Guo and Z.D.Mei, Output feedback stabilization for a classof first-order equation setting ofcollocatedwell-posed linear systems with time delay in observation,  IEEE Transactions on Automatic Control,  65(2020), 2612-2618.

[10]. H.Feng, B.Z.Guo, and X.H.Wu, Trajectory planning approach to output tracking for a 1-D wave equation,  IEEE Transactions on Automatic Control ,  65(2020) ,1841-1854.  

[11]. H.C.Zhou, B.Z.Guo, and S.H.Xiang, Performance output tracking formulti-dimensional heat equation subject to unmatched disturbance and non-collocated control , IEEE Transactions on Automatic Control , 65(2020), 1940-1955.

[12]. B.Z.Guo and T.T.Meng, Robust error based non-collocated output tracking control for a heat equation,  Automatica , 114(2020), 108818, 11 pp.

[13]. Z.D.Mei and B.Z.Guo, Stabilization for infinite-dimensional linear systems with bounded control and time delayed observation,  Systems & Control Letters,  134(2019), 104532.

[14]. J.Liu and B.Z.Guo,A novel semi-discrete scheme preserving uniformly exponential stability for an Euler-Bernoulli beam,  Systems & Control Letters , 134(2019), 104518.

[15]. F.F.Jin and B.Z.Guo, Boundary output tracking for an Euler-Bernoulli beam equation with unmatched perturbations from a known exosystem , Automatica , 109(2019), 108507, 9 pp.

[16].  W.Kang and B.Z.Guo, Arbitrary decay for boundary stabilization of Schrodinger equation subject to unknown disturbance by Lyapunov approach,  IFAC Journal of Systems and Control , 7(2019),100033.

[17]. Z.L.Zhao and B.Z.Guo, A novel extended state observer for output tracking of MIMO systems with mismatched uncertainty, IEEE Transactions on Automatic Control,  63(2018), 211-218.

[18]. F.F.Jinand B.Z. Guo, Performance boundary output tracking for one-dimensional heat equation with boundary unmatched disturbance, Automatica , 96(2018),1-10.

[19].  H.C.Zhou and B.Z.Guo, Boundary feedback stabilization foranunstable time fractional reaction diffusion equation, SIAM Journal on Control and Optimization , 56(2018), 75-101.

[20]. Z.L.Zhao and B.Z.Guo, A nonlinear extended state observer based onfractional power functions,  Automatica , 81(2017), 286-296.

[21]. H.C.Zhou and B.Z.Guo, Unknown input observer design and output feedback stabilization for multi-dimensional wave equation with boundary control matched uncertainty,  Journal of Differential Equations,  263(2017), 22132246.

[22]. H.Feng and B.Z.Guo,Active disturbance rejection control: New and old results,  Annual Reviews in Control,  44(2017), 238-248.

[23].  H.Feng and B.Z.Guo, New unknown input observer and output feedback stabilization for uncertain heat equation,  Automatica , 86(2017), 1-10.

[24].  H.Feng and B.Z.Guo, A new active disturbance rejection control to output feedback stabilization for a one-dimensional anti-stable wave equation withdisturbance,  IEEE Transactions on Automatic Control , 62(2017),3774-3787.

[25]. H.Feng and B.Z.Guo, Observer design andexponential stabilization forwave equation in energy space by boundary displacement measurement only,  IEEE Transactions on Automatic Control,  62(2017), 1438-1444.

[26]. B.Z.Guo and Z.H.Wu, Output tracking for a class of nonlinear systems with mismatched uncertainties by active disturbance rejection control,  Systems & Control Letters , 100(2017), 21-31.

[27]. B.Z.Guo and H.Q.Yu, Optimal state estimation for non-time invertible evolutionary system,  SIAM Journal on Control and Optimization , 54(2016),2754-2786.

[28].  B.Z.Guo, Y.S.Xu, and D.H.Yang, Optimal actuator location ofminimum normcontrols for heat equation with general controlleddomain,  Journal of Differential Equations , 261(2016), 3588-3614.

[29]. R.L.Wen, S.G.Chai, and B.Z.Guo, Well-posedness and exact controllability of fourth-order Schrödinger equation with hinged boundary control and collocated observation,  Mathematics of Control, Signals, and Systems , 28(2016), article 22.

[30]. B.Z.Guo, Z.H.Wu, and H.C.Zhou, Active disturbance rejection control approach to output-feedback stabilization of a class of uncertain nonlinear systems subject to stochastic disturbance,  IEEE Transactions on Automatic Control, 61(2016), 1613-1618.

[31]. W.Guo and B.Z.Guo, Performance output tracking for a wave equation subject to unmatched general boundary harmonic disturbance,  Automatica , 68(2016), 194-202.

[32]. H.Feng and B.Z.Guo,Distributeddisturbance estimator and application to stabilization formulti-dimensional wave equation with corrupted boundary observation,  Automatica , 66(2016),2533.

[33]. Z.L.Zhao and B.Z.Guo, Extended state observer for uncertain lower triangular nonlinear systems, Systems and Control Letters,  85(2015), 100-108.

[34]. B.Sun and B.Z.Guo,Convergence of an upwind finite-difference scheme forHamilton-Jacobi-Bellman equation in optimal control, IEEE Transactions on Automatic Control, 60(2015), 3012-3017.

[35]. H.Feng and B.Z.Guo, On stability equivalence betweendynamic output feedback and staticoutput feedback for a class of second order infinite-dimensional infinite-dimensional systems,  SIAM Journal on Control and Optimization,  53(2015),1934-1955.

[36].  G.J.Zheng, B.Z.Guo, and M.M.Ali, Continuous dependence of optimal controlto controlled domain of actuatorfor heat equation,  Systems and Control Letters,  79(2015), 30-38.

[37].  B.Z.Guo and F.F.Jin,Output feedback stabilization forone-dimensional wave equation subject to boundary disturbance, IEEE Transactions on Automatic Control , 60(2015), 824-830.

[38]. B.Z.Guo and D.H.Yang, Optimal actuator location for time and norm optimal control ofnull controllable heat equation,  Mathematics ofControl, Signals, and Systems , 27(2015), 2348.

[39]. B.Z.Guo and H.C.Zhou, The active disturbance rejection control to stabilization for multi-dimensional wave equationwith boundary control matched disturbance,  IEEE Transactions on Automatic Control,  60(2015), 143-157.

[40]. F.F.Jin and B.Z.Guo, Lyapunov approach to output feedback stabilization forEuler-Bernoulli beam equation with boundary,  Automatica , 52(2015), 95-102.

[41]. H.Feng and B.Z.Guo, Output feedback stabilization for unstable wave equation with general corrupted boundary observation,  Automatica , 50(2014), 3164-3172.

[42].  G.J.Zheng, B.Z.Guo, and M.M.Ali,Stability of optimal control of heat equation withsingular potential, Systems and Control Letters,  74(2014) 18-23.

[43]. B.Z.Guo and H.C.Zhou, Active disturbance rejection control for rejecting boundary disturbancefrom multi-dimensional Kirchhoffplatevia boundary control, SIAM Journal on Control and Optimization , 52(2014),2800-2830.

[44]. Q.Zhang, J.M.Wang and B.Z.Guo, Stabilization of the Euler-Bernoulli equation via boundary connection with heat equation,  Mathematics ofControl, Signals, and Systems , 26(2014), 77-118.

[45]. B.Z.Guo and L.Zhang, Local null controllability ofChemotaxis system of parabolic-elliptic type,  Systems and Control Letters, 65(2014), 106-111.

[46].  R.L.Wen, S.G.Chai, and B.Z.Guo, Well-posedness and exact controllability offourth order Schrodinger equation with boundary control and collocated observation, SIAM Journal on Control and Optimization , 52(2014),365-396.

[47]. B.Z.Guo and Z.L.Zhao, On convergence of the nonlinear active disturbance rejection control for MIMO Systems,  SIAM Journal on Control and Optimization, 51(2013), 1727-1757.

[48]. B.Z.Guo and Z.L.Zhao, Weak convergence ofnonlinear high-gain tracking differentiator,  IEEE Transactions on Automatic Control,  58(2013),1074-1080.

[49]. B.Z.Guo and F.F.Jin, The active disturbance rejection and sliding mode control approachto the stabilization ofEuler-Bernoulli beam equation with boundary input disturbance,  Automatica , 49(2013), 2911-2918.

[50]. W.Guo and B.Z.Guo, Parameter estimation and non-collocated adaptive stabilization for a wave equation subject to general boundary harmonic disturbance,  IEEE Transactions on Automatic Control , 58(2013), 1631-1643.

[51]. W.Guo and B.Z.Guo Adaptive output feedback stabilization for one-dimensional wave equation with corrupted observation by harmonic disturbance,  SIAM Journal on Control and Optimization, 51(2013), 16791706.

[52]. B.Z.Guo and F.F.Jin, Sliding mode and active disturbance rejection control to stabilization of one-dimensional anti-stable wave equations subject to disturbance in boundary input, IEEE Transactions on Automatic Control , 58(2013),1269-1274.

[53]. B.Z.Guo and D.H.Yang, On convergence of boundary Hausdorff measure and application to a boundary shape optimization problem,  SIAM Journal on Control and Optimization,  51(2013), 253272.

[54]. B.Z.Guo and Z.C.Shao, Well-posedness and regularity for non-uniformSchrodinger andEuler-Bernoulli equations with boundary control and observation, Quarterly of Applied Mathematics ,70(2012), 111-132.

[55].  B.Z.Guo and D.H.Yang, Some compact classes of open sets under Hausdorff distance and application to shape optimization,  SIAM Journal on Control and Optimization , 50(2012), 222242.

[56]. B.Z.Guo and Z.L.Zhao, On the convergence of extended state observer for nonlinear systems with uncertainty,  Systems and Control Letters , 60(2011), 420-430.

[57]. M. Krstic, B.Z.Guo and A. Smyshlyaev, Boundary controllers and observers for the linearized Schrodinger equation,  SIAM Journal on Control and Optimization , 49(2011), 14791497.

[58]. J.M.Wang, B.Z.Guo and M.Krstic, Wave equation stabilization by delays equal to even multiples of the wave propagation time, SIAM Journal on Control and Optimization, 49(2011), 517554.

[59]. S.G.Chai and B.Z.Guo, Well-posedness and regularity of Naghdi's shell equation under boundary control,  Journal of Differential Equations , 249 (2010) , 3174-3214.

[60]. B.Z.Guo and F.F.Jin, Arbitrary decay ratefor two connected strings with joint anti-damping by boundary output feedback,  Automatica , 46(2010),1203-1209.

[61].  B.Z.Guo and K.Y.Yang, Output feedback stabilization of a one-dimensional Schrodinger equation by boundary observation with time delay, IEEE Transactions on Automatic Control , 55(2010), 1226 -1232.

[62]. S.G.Chai and B.Z.Guo, Feedthrough operator for linear elasticity system with boundary control and observation,  SIAM Journal on Control and Optimization, 48(2010),3708-3734.

[63].  B.Z.Guo and T.T.Wu, Approximation of optimal feedback control: A dynamic programming approach, Journal of Global Optimization, 46(2010), 395-422.

[64]. B.Z.Guo and Z.X.Zhang, Well-posedness of systems of linear elasticity with Dirichlet boundary control and observation, SIAM Journal on Control and Optimization, 48(2009), 2139-2167.

[65]. A.Smyshlyaev, B.Z.Guo and M.Krstic, Arbitrary decay rate for Euler-Bernoulli beam by backstepping boundary feedback,  IEEE Transactions on Automatic Control, 54(2009), 1134-1140.

[66]. B.Z.Guo and K.Y.Yang, Dynamic stabilization of an Euler-Bernoulli beam equation with time delay in boundary observation,  Automatica, 45(2009), 1468-475.

[67].  B.Z.Guo and W.Guo, The strong stabilization of a one-dimensional wave equation by non-collocated dynamic boundary feedback control,  Automatica , 45(2009), 790-797.

[68]. B.Z.Guo and Z.C.Shao, Stabilization of an abstract second order system with application to wave equations under non-collocated control and observations, Systems and Control Letters , 58 (2009),334-341.

[69]. J.D.Chang and B.Z.Guo, Application of Ingham-Beuling type type theorems to coefficients identifiability of vibrating systems: finite time identifiability ,  Differential and Integral Equations , 21(2008), 1037-1054.

[70]. B.Z.Guo, J.M.Wang and K.Y.Yang, Dynamic stabilization of an Euler-Bernoulli beam under boundary control and non-collocated observation,  Systems and Control Letters , 57(2008), 740-749.

[71]. M. Krstic, B.Z. Guo, A. Balogh, and A. Smyshlyaev, Control of a tip-force destabilized shear beam by non-collocated observer-based boundary feedback, SIAM Journal on Control and Optimization , 47(2008), 553-574.

[72]. M. Krstic, B.Z.Guo, A. Balogh and A. Smyshlyaev, Output-feedback stabilization of an unstable wave equation,  Automatica , 44(2008), 63-74.

[73]. B. Z. Guo and Z.X. Zhang,Well-Posedness and regularity for an Euler-Bernoulli plate with variable coefficients and boundary control and observation, Mathematics of Control, Signals, and Systems,  19(2007), 337-360.

[74]. B. Z. Guo and Z. C. Shao, On well-posedness, regularity and exact controllability for problems of transmission ofplate equation with variable coefficients Quarterly of Applied Mathematics,  65(2007), 705-736.

[75]. B.Z. Guo and B. Sun, Numerical solution to the optimal feedback control of continuous casting process, J ournal of Global Optimization, 39(2007), 171-195.

[76].  J.D. Chang and B.Z. Guo, Identification of variable spacial coefficients for a beam equation from boundary measurement,  Automatica , 43(2007), 732-737.

[77]. B. Z. Guo and C.Z. Xu,The stabilization of a one-dimensional wave equation by boundary feedback with non-collocated observation, IEEE Transactions on Automatic Control , 52(2007),371-377.

[78].  B.Z. Guo and J. M. Wang, Remarks on the application of the Keldysh Theorem to the completeness of root subspace of non-self-adjoint operators and comments on "Spectral operators generated by Timoshenko beam model",  Systems and Control Letters , 55(2006), 1029-1032.

[79]. B.Z. Guo and H. Zwart, On the relation between stability of continuous- and discrete time evolution equations via the Cayley transform, Integral Equations and Operator Theory, 54(2006), 349-383.

[80]. B.Z. Guo and G.Q. Xu, Expansion of solution in terms of generalized eigenfunctions for a hyperbolic system with static boundary condition,  Journal of Functional Analysis,  231(2006), 245-268.

[81]. B.Z. Guo and J.M. Wang, The well-posedness and stability of a beam equation with conjugate variables assigned at the same boundary, IEEE Transactions on Automatic Control,  50(12)(2005), 2087-2093.

[82]. B.Z. Guo and X. Zhang, The regularity of the wave equation with partial Dirichlet control and colocated observation,  SIAM Journal on Control and Optimization, 44(5)(2005), 1598-1613.

[83]. B.Z. Guo and Z.C. Shao, Regularity of a Schrodinger equation with Dirichlet control and colocated observation,  Systems and Control Letters , 54(2005), 1135-1142.

[84].  B.Z. Guo, J.M. Wang and S. P. Yung, Boundary stabilization of a flexible manipulator with rotational inertia,  Differential and Integral Equations , 18(2005), 1013-1038.

[85]. B.Z. Guo, J.M. Wang and S.P.Yung, On the C0-semigroup generation and exponential stability resulting from a shear force feedback on a rotating beam, Systems and Control Letters , 54(2005), 557-574.

[86]. B.Z. Guo and G.Q. Xu, On Basis property of a hyperbolic system with dynamic boundary condition,  Differential and Integral Equations , 18(1)(2005), 35-60.

[87] B.Z. Guo and Y. Xie, A sufficient condition on Riesz basis with parentheses of non-selfadjoint operator and application to a serially connected string system under joint feedbacks,  SIAM Journal on Control and Optimizations , 43(2004), 1234-1252.

[88]. B.Z. Guo and G.Q. Xu, Riesz bases and exact controllability of C0-groups with one-dimensional input operators,  Systems and Control Letters , 52(2004), 221-232.

[89]. G.Q. Xu and B.Z. Guo, Riesz basis property of evolution equations in Hilbert spaces and application to a coupled string equation, SIAM Journal on Control and Optimization,  42(2003), 966-984.

[90].  B.Z. Guo and Y.H. Luo, Riesz basis property of a second order hyperbolic system with collocated scalar input/output,  IEEE Transactions on Automatic Control , 47(2002), 693-698.

[91]. B.Z. Guo and Y.H. Luo, Controllability and stability of a second order hyperbolic system with collocated sensor/actuator,  Systems and Control Letters, 46(2002),45-65.

[92]. B.Z. Guo, Riesz basis property and exponential stability of controlled Euler-Bernoulli beam equations with variable coefficients, SIAM Journal on Control and Optimization , 40(2002), 1905-1923.

[93]. B.Z. Guo, Riesz basis approach to the stabilization of a flexible beam with a tip mass, SIAM Journal on Control and Optimization , 39(2001), 1736-1747.

[94].  W.D. Zhu, B. Z. Guo and C. D. Jr Mote, Stabilization of a translating tensioned beam through a pointwise control force,  ASME Journal of Dynamic Systems, Measurement, and Control,  122(2000) 322-331.

[95]. B.Z. Guo and C.Z. Xu, On the spectrum-determined growth condition of a vibration cable with a tip mass, IEEE Transactions on Automatic Control , 45(2000), 89-93.

[96]. W.D. Zhu and B.Z. Guo, Free and forced vibration of an axially moving string with an arbitrary velocity profile,  ASME Journal ofApplied Mechanics , 65(4)(1998), 901-907.

[97]. W.D. Zhu and B.Z. Guo, On Hybrid boundary control of flexible systems,  ASME Journal of Dynamic Systems, Measurement, and Control,  119(1997), 836-839. .

[98].  B.Z. Guo and W.D. Zhu, On the energy decay of two coulpled strings through a joint damper, Journal of Sound and Vibration,  203(3)(1997), 447-455.

[99]. W.D. Zhu, Mote C.D. Jr and B.Z. Guo, Asymptotic distribution of eigenvalues of constrained translating string,  ASME Journalof Applied Mechanics , 64(1997), 613-619.

[92].  Z.H. Luo and B.Z. Guo, Shear force feedback control of a single link flexible robot with revolute joint, IEEE Transactions on Automatic Control, 42(1997), 53-65.

[100]. Z.H. Luo, N. Kitamura and B.Z. Guo, Shear force feedback control of flexible robot arms, IEEE Transactions on Robotics Automation, 11(1995),760-765.

[101].  Z.H. Luo and B.Z. Guo, Further theoretical results on direct strain feedback control of flexible robot arms,  IEEE Transactions on Automatic Control , 40(1995), 747-751.

[102]. W.L. Chan and B.Z. Guo, Global behavior of age-dependent Logistic population models,  Journal of Mathematical Biology,  28(1990), 225-235.

[103]. W.L. Chan and B.Z. Guo, On the semigroups for age-dependent population dynamics with spatial diffusion,  Manuscripta Mathematica , 66(1989), 161-181.

[104]. B. Z. Guo and W. L. Chan, A semigroup approach to age-dependent population dynamics with time delay,  Communication in Partial Differential Equations , 14(1989), 809-832.