您目前的位置: 首页» 教学科研

学术报告预告


【报告题目】 Benjamin-Ono-Burgers 方程的无粘性极限研究

【报 告人】韩励佳

【时间】2020年11月20日(星期五 )3:00-4:00pm

【地 点】主D601

【报告人简介】韩励佳教授主要研究偏微分方程,代表作有:

1. Guo, Yan; Han, Lijia; Zhang, Jingjun Absence of shocks for one dimensional Euler-Poisson system.Arch. Ration. Mech. Anal.223 (2017), no. 3,1057–1121.

2. Han, Lijia; Zhang, Jingjun; Guo, Boling Global smooth solution for a kind of two-fluid system in plasmas.J. Differential Equations252 (2012), no. 5,3453–3481.

3. Gan, Zaihui; Guo, Boling; Han, Lijia; Zhang, Jian Virial type blow-up solutions for the Zakharov system with magnetic field in a cold plasma. J. Funct. Anal.261 (2011), no. 9, 2508–2528.

4.Wang, Baoxiang; Han, Lijia; Huang, Chunyan Global well-posedness and scattering for the derivative nonlinear Schrödinger equation with small rough data. Ann. Inst. H. PoincaréAnal. Non Linéaire26 (2009), no. 6, 2253–2281.

5.Han, Lijia; Wang, Baoxiang Global wellposedness and limit behavior for the generalized finite-depth-fluid equation with small data in critical Besov spaces B˙s2,1 . J. Differential Equations245 (2008), no. 8, 2103–2144.

【报告内容简介】

报告首先将介绍Benjamin-Ono方程等一系列色散型非线性偏微分方程。其次,介绍当粘性系数趋近于0时,Benjamin-Ono-Burgers 方程对Benjamin-Ono方程的逼近。报告基于下面的两篇新近研究论文:

[1]Mingjuan Chen, Boling Guo, LijiaHan*,Uniform localwell-posedness and inviscid limit for the Benjamin-Ono-Burgersequation. Science China Mathematics. Accepted.

[2] Mingjuan Chen, Boling Guo, LijiaHan*,Global well-posedness and inviscid limit for the generalized Benjamin-OnoBurgers equation. Applicable Analysis, 98 (3)(2019), 536– 552.